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Abstract. In situ visualization and analysis is a valuable yet under uti-
lized commodity for the simulation community. There is hesitance or
even resistance to adopting new methodologies due to the uncertainties
that in situ holds for new users. There is a perceived implementation
cost, maintenance cost, risk to simulation fault tolerance, potential lack
of scalability, a new resource cost for running in situ processes, and more.
The list of reasons why in situ is overlooked is long. We are attempting to
break down this barrier by introducing Inshimtu. Inshimtu is an in situ
“shim” library that enables users to try in situ before they buy into a full
implementation. It does this by working with existing simulation output
files, requiring no changes to simulation code. The core visualization com-
ponent of Inshimtu is ParaView Catalyst, allowing it to take advantage
of both interactive and non-interactive visualization pipelines that scale.
We envision Inshimtu as stepping stone to show users the value of in situ
and motivate them to move to one of the many existing fully-featured in
situ libraries available in the community. We demonstrate the function-
ality of Inshimtu with a scientific workflow on the Shaheen II supercom-
puter.

Inshimtu is available for download at:
https://github.com/kaust-vislab/Inshimtu-basic.

1 Introduction

With the launch of the worlds first exascale computer, the benefits that in situ
visualization are poised to provide to the community at large are only going to
grow. With each new generation of supercomputer the gap between compute and
storage capacity continues to grow [3, 13]. In order to combat this trend, simula-
tion teams often turn down the frequency of their writes to disk, further opening
the possibility of missing important features, while also causing video transitions
over time to become jittery. As a whole, the in situ visualization community has
created and maintains a number of different in situ visualization packages that
are capable of not only speeding up simulations time to solution, but also will
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allow them to take advantage of higher temporal and spatial resolutions. How-
ever, the uptake of in situ technologies by simulation teams is still low, with
users concerned over things such as resilience, data integrity, integration time,
and code maintenance [21]. The question we must ask then is how aid simulation
teams to overcome these issues whether perceived or actual?

In response to this question we present Inshimtu, an in situ shim, that allows
simulation codes to experience some of the benefits of in situ with no changes
required to their simulations. The idea behind this library is a low barrier try
before you buy approach, where simulations can see, strategize about, and under-
stand the different types of in situ and how they could potentially be beneficial,
all with very little effort. This ease of use is accomplished through the use of
file based in situ, meaning Inshimtu reads directly from the simulation output,
and then all of the visualization and analysis is handled by our integration with
ParaView Catalyst. The visualization pipelines and scripts used with Inshimtu
are exactly the same as those used by the fully simulation-embedded version of
Catalyst. So in the end, if Catalyst is chosen as the way forward for a full in situ
integration by the simulation team, their existing scripts can be reused. In prac-
tice the only modification to existing simulation setup required is one additional
line in the batch file to start Inshimtu in the background before the simulation.
Inshimtu is thus a stepping stone from basic to complete in-situ visualization,
with it’s primary goal to be a low barrier to entry teaching tool to educate and
inform simulation developers about the benefits they are missing by ignoring in
situ techniques.

In this paper we describe Inshimtu and an associated use case on our Shaheen
II supercomputer. In Section 3 we describe the design and implementation, as
well as the underlying technologies used by Inshimtu. In Section 4 we present
examples of Inshimtu being used for visualization and analysis tasks. We also dis-
cuss the easy instrumentation and configuration process which makes Inshimtu
have a low barrier to entry. Finally in Section 5 we present a summary and
provide some thoughts on future directions.

2 Related Work

In situ visualization is a fragmented space, with many different tools and frame-
works available, each with their own dedicated use cases and implementation
strategies [24]. Generally, a simulation team would need to pick either an in-
line [8] or in-transit [21, 26] visualization tool and then redesign their code and
I/O strategy around this new framework. This approach can lead to very pow-
erful and performant visualization [14] that can not only save time vs. pos-hoc
visualization but also cost [2, 7, 22, 23, 28].

Some of the most current and pervasive tools include: LibSim [31] is a li-
brary that allows simulations to use the full set of features of the VisIt [12]
visualization tool. ParaView Catalyst [6] offers a similar in situ functionality for
the ParaView [4] visualization tool. ADIOS2 [20] is an I/O middleware library
that exposes both in-line and in-transit paradigms to a simulation through a
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POSIX-like API. Its in-transit capabilities are provided by a number of differ-
ent data transport methods, including DataSpaces [16], DIMES [33], and Flex-
Path [15]. Damaris/Viz [17] provides both in-line and in-transit visualization
using the Damaris I/O middleware. Ascent [25] is a fly-weight in situ infrastruc-
ture that supports both distributed-memory and shared-memory parallelism.
SENSEI [5, 9, 10] is a generic data interface that allows transparent use of the
LibSim, Catalyst, and ADIOS in situ frameworks. UDJ [18] is a communica-
tion library for transporting distributed data between parallel high performance
computing applications and has demonstrated a proof of concept using an ex-
tension of Inshimtu, which is based on streaming data vs. file synchronization.
Freeprocessing [19] is an in situ interposition library that works in either a syn-
chronous or asynchronous mode. Initialize Compute Analyze Render Update
Steer (ICARUS) [30] is a ParaView plug-in for in situ visualization and compu-
tational steering using a shared memory mapped HDF5 file for data access.

However, the simulation communities uptake of in situ technologies has been
slow. There are a long list of reasons typically given why in situ is not used,
but it generally boils down to the fact that visualization has traditionally been
performed as a post-processing task, where simulation outputs are read from disk
by a visualization and analysis tool. This completely un-couples the simulation
from the visualization and doesn’t distract the simulation team from their true
goal, of getting the perfect simulation. As newer and more simulation friendly
in situ integration methods are developed (such as visualization as a service [27]
and Fides [29]) the resistance for adoption by simulation stake holders will likely
decrease.

In the meantime however, to lower the barrier for simulations to experience
and benefit from in situ, we present Inshimtu. Inshimtu allows for a low-barrier to
entry with no changes needed to existing simulation codes. Simulation codes can
try out pseudo-in situ easily, and see the benefits that a full in situ integration
could provide. There are numerous flavors of in situ visualization, and Inshimtu
falls into one of them, as categorized by an effort led by Childs et al [11] who
created a system by which an in situ systems could be described by six different
axes, each with various corresponding sub-categories. Inshimtu is:

– Integration Type: Application Aware (dedicated API)
– Proximity: Off Node, Same Computing Resource
– Access: Indirect
– Division of Execution: Space Division
– Operation Controls: Both - Automatic and Human-in-the-Loop
– Output Type: Varies based on Catalyst script

While Inshimtu isn’t, and doesn’t purport to be, a long term solution for a
simulation codes in situ integration, it can provide a much needed entry point
where users can learn about and see the benefits of in situ, and then move on to
a full-fledged in situ tool after they have been convinced. This step is something
that has been missing in the community up until this point, with the onus of
moving to in situ being left to simulation developers, which is one reason why
adoption has been so low up until this point.



4 J. Kress et al.

3 Design and Implementation of Inshimtu

Inshimtu is so named because it is our vision that this code is an in situ shim
that can be used to augment existing simulations with in situ capabilities. The
goal of Inshimtu is to provide a stepping stone for users coming from a post hoc
processing world to try in situ with no development required. A further benefit
of Inshimtu to simulation developers is that they do not have to link their codes
with any external dependencies in order to test Inshimtu, simplifying the process
to try in situ. Inshimtu builds on existing technologies for data visualization and
is not designed to replace a full instrumentation of a simulation code with one
of the many existing in situ libraries, it is simply a low barrier way for codes
that have never tried in situ and don’t know what it can offer or where to
start, to experience the benefits in situ provides. Simulations write their output
to temporary files where Inshimtu reads, processes, visualizes, creates subsets,
and can even delete the original output files, saving only what it interesting or
useful. The temporary nature of these files means that we can write out higher
spatial and/or temporal resolutions than the filesystem might otherwise support;
while, the output of the visualization pipelines produce compressed simulation
artifacts to save to persistent storage. This process is illustrated in Fig. 1. Of
course, the use of Inshimtu comes with a small cost. Inshimtu is not real in-situ,
the traditional advantages of in-situ, like speeding up simulation execution time
by avoiding costly I/O, can obviously not be exploited. Below, we first describe
the existing technologies used in Inshimtu, followed by its overall design and
implementation.

Fig. 1: A simulation plus Inshimtu pipeline over time. This pipeline denotes the
simulation outputting data to disk where Inshimtu will then process that simu-
lation output using a ParaView Catalyst pipeline. The output of this processing
can be images, summary statistics, or even subsets of the simulation data.
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3.1 Existing Technology

Inshimtu uses three primary existing technologies: 1. VTK 2. ParaView and
3. Catalyst.

One of the main design goals was an easy integration into existing visualiza-
tion tools. We chose the open source ParaView and Catalyst for this task. We
leverage the full workflow of these tools for designing in-situ pipelines.

VTK - VTK is used as the underlying data model. A number of different im-
porters have been implemented in Inshimtu that directly make use of existing
VTK readers. Using VTK means that the data can be directly passed into Cat-
alyst for processing and visualization.

Catalyst - Catalyst is used for its ability to access the full power of ParaView.
By using Catalyst scripts users are able to perform any visualization, subset,
or statistics operator that they would be able to use in the full ParaView GUI.
Catalyst1 is used in the current implementation of Inshimtu.

ParaView - The main function of ParaView for Inshimtu is to enable live inter-
active visualization. Inshimtu can connect to ParaView using Catalyst allowing
users to interactively explore their data. This is particularly useful for users when
they are designing their Catalyst scripts and visualization operations for large
runs.

3.2 Inshimtu Design

Inshimtu is composed of four primary components: 1. core 2. sentinels 3. utils
and 4. processing.

core - This component comprises the basic Inshimtu infrastructure (MPI, coor-
dinators, initial argument parsing).

sentinels - This component is responsible for setting up file system watchers to
watch for new files to process, as well as watching for the done signal that comes
at the end of a batch job.

utils - This is a helper component that consists of help and logging classes,
allowing for easier debugging when developing new components.

processing - This component is the main workhorse within Inshimtu. It con-
tains the Catalyst adapter, sets up pipelines, and contains the various importer
classes. Currently Inshimtu uses Catalyst1. There are four current implemented
importers: 1. RawNetCDF 2. XMLImage 3. XMLPImage and 4. XMLRectilin-
ear. Implementing new importers for different simulation codes is straightfor-
ward when making use of existing VTK importers. Thus, Inshimtu can easily be
extended to accommodate reading new simulation output.
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3.3 Using Inshimtu

Enabling Inshimtu amounts to adding a line to the batch file before running a
simulation code. No changes to the simulation code are required. The simula-
tion code is not aware of Inshimtu, and no coupling or synchronization exists
between the simulation and Inshimtu. Once the simulation is actively running
and saving its outputs to disk, Inshimtu takes those outputs from disk, processes
them with a Catalyst script (users can even connect live with ParaView if de-
sired), saves the outputs (images, extracts, summary statistics, etc.), and then
watches and waits for new outputs to appear. Once the simulation terminates,
the batch script updates a “*.done” file which Inshimtu watches in order to know
when all processing is complete. One important feature of Inshimtu is that it
can be enabled to remove simulation output files after it processes them, thus
only keeping its outputs on disk, drastically saving storage space during a long
simulation.

There are two ways to launch and configure Inshimtu. First, Inshimtu can
parse a JSON file with the necessary arguments (see Fig. 2). This JSON file
(see Fig. 3) can either pass a link to a catalyst script, or the script can be
embedded into the JSON file. In addition to specific catalyst commands, this
JSON file can be used to specify specific pre- or post-processing commands that
are run before or after the catalyst functions. The benefit of this is that data
can be decompressed by Inshimtu before use if needed, moved, modified, then
processed by Catalyst, and then the original data and the output from Catalyst
can be manipulated further if needed. Additionally, this script can tell Inshimtu
to only process specific variables, which directory to watch for new simulation
files, as well as pass control information to tell Inshimtu when to start and stop.
Second, all of the required arguments can be specified on the command line (see
Fig. 4).

1 srun ./ Inshimtu -c ../ testing/configs/png_watchDir_QVAPOR.json

Fig. 2: Launching Inshimtu using the JSON configuration file detailed in Fig. 3.

We believe that the simple interface for using Inshimtu, coupled with the use
of well established existing visualization technologies, creates a convenient way
to promote in situ to the simulation community. It is our goal that this code
be used to educate simulation developers and users to the value of in situ, and
guide them in creating true in situ integrations in their codes.

4 Inshimtu Use Cases

In this section we describe two different visualization case studies that demon-
strate the functionality of Inshimtu as described in Section 3. The first case study



Inshimtu – A Lightweight In Situ Visualization “Shim” 7

1 { "input": {
2 "watch": {
3 "directory_path": "testing",
4 "files_regex": "\\w*(. pvti)"
5 }
6 },
7 "pipeline": {
8 "scripts": [
9 "../ testing/pipelines/pngQVAPOR.py"

10 ],
11 "variables": [

12 "QVAPOR"
13 ]
14 },
15 "control": {
16 "done_watchfile": "testing.done",
17 "initial_connection_wait_secs": 0,
18 "catalyst_inporter_nodes": [
19 "0"
20 ],
21 "delete_processed_input_files": false }}

Fig. 3: Inshimtu JSON code example that watches a directory for *.pvti files and
then processes them with a Catalyst Python script.

1 srun ./ Inshimtu -w testing
2 -d testing.done
3 -s ../ testing/pipelines/pngQVAPOR.py
4 -f ‘‘\w*(. pvti)’’
5 -v QVAPOR

Fig. 4: Launching Inshimtu using explicit command line arguments to match the
pipeline described in Fig. 3.

in Section 4.1 uses Inshimtu to perform basic post processing tasks, demon-
strating the Catalyst pipelines and basic Inshimtu functionality. The second
case study in Section 4.2 uses WRF, the Weather Research and Forecasting
Model [32] run on the Shaheen II supercomputer. Finally, we discuss the results
and instrumentation process.

Inshimtu Release The following two subsections make use of Inshimtu and refer-
ence scripts and examples available in our GitHub repository: https://github.
com/kaust-vislab/Inshimtu-basic.

4.1 Post processing with Inshimtu

Inshimtu is designed to be run during an active simulation, but since it is an in
situ shim, and designed to work from files, it can easily be used to post process
data as well. In fact, this is the perfect way to test catalyst scripts, different
Inshimtu settings, and easily process existing simulation output. An example of
how to do this is available in our repository, and uses the script shown in Fig. 5

To setup this example, first build Inshimtu according to the README.md
instructions. Once Inshimtu is built cd into the build directory, in order to pre-
pare to run the png_enumerated_QVAPOR.json example. This example will
process all existing files specified in the example script, and exit when all files
have been processed. It uses the Catalyst script pngQVAPOR.py to transfer
data to ParaView, if watching live using ParaView, and creates a *.png image
as output. To run this example use the following steps:

1. Create a directory called testing where data files that are to be processed by
Inshimtu will be copied
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1 { "input": {
2 "initial_files": [
3 "testing/dataoutfile_QVAPOR_00.pvti",
4 "testing/dataoutfile_QVAPOR_01.pvti",
5 "testing/dataoutfile_QVAPOR_02.pvti",
6 "testing/dataoutfile_QVAPOR_03.pvti",
7 "testing/dataoutfile_QVAPOR_04.pvti",
8 "testing/dataoutfile_QVAPOR_05.pvti",
9 "testing/dataoutfile_QVAPOR_06.pvti",

10 "testing/dataoutfile_QVAPOR_07.pvti",
11 "testing/dataoutfile_QVAPOR_08.pvti",
12 "testing/dataoutfile_QVAPOR_09.pvti",
13 "testing/dataoutfile_QVAPOR_10.pvti",
14 "testing/dataoutfile_QVAPOR_11.pvti",
15 "testing/dataoutfile_QVAPOR_12.pvti",
16 "testing/dataoutfile_QVAPOR_13.pvti",
17 "testing/dataoutfile_QVAPOR_14.pvti"

18 ]
19 },
20 "pipeline": {
21 "scripts": [
22 "../ testing/pipelines/pngQVAPOR.py"
23 ],
24 "variables": [
25 "QVAPOR"
26 ]
27 },
28 "control": {
29 "initial_connection_wait_secs": 10,
30 "catalyst_inporter_nodes": [
31 "0"
32 ]
33 }
34 }

Fig. 5: Inshimtu JSON code example that processes an enumerated list of existing
data files with a Catalyst Python script.

2. Copy the example data files to this directory: cp -r ../testing/data/wr-
f/pvti/* testing

3. To view the data live in ParaView enable the Catalyst connection in ParaView
– Select Catalyst / Connect... from the ParaView menu
– Click OK in Catalyst Server Port dialog to accept connections from

Inshimtu
– Click OK in Ready for Catalyst Connections dialog
– Select Catalyst / Pause Simulation from ParaView menu

4. Run Inshimtu:
./Inshimtu -c ../testing/configs/png_enumerated_QVAPOR.json

5. View the results in ParaView as well as the images saved to disk

There are several more examples in the testing/configs directory that you
can try, each one being a derivation of one of Inshimtu’s features, or using a
different data type. View these files to explore other features of Inshimtu.

4.2 WRF + Inshimtu

For this use case we used the WRF simulation code run on Shaheen II at KAUST.
WRF was chosen as an example code as there is a large user community at
KAUST and it can produce vast quantities of data when looking at fine temporal
resolutions. We ran wrf configured to simulate an area approximately 50 KM in
a square centered around Jeddah Saudi Arabia and to create an extreme rain
event. The premise behind this visualization is that the scientists were interested
in creating a movie of various variables each time the simulation was run, with
the catch being, that the phenomena of interest only occurred when simulating
at a fine temporal resolution; a great use case for in situ.

Inshimtu was run on a separate compute cluster called Ibex, which is pri-
marily dedicated to running various analysis workflows. Ibex and Shaheen have
access to a common filesystem, so Inshimtu was able to read the files as they
were produced by WRF. This visualization used a very similar setup to that of
the png_enumerated_QVAPOR.json example and the pngQVAPOR.py catalyst
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script. We just added more complex interactions and more variables. As we were
using Catalyst we could also interactively explore the data live in ParaView by
having the Ibex Catalyst script connect back to our local desktop. Fig. 6 gives
an example visualization of the area of interest around Jeddah showing four
primary variables.

Fig. 6: Example visualization from Catalyst using Inshimtu of one of timesteps
in the wrf simulation.

These two use cases are designed to show the functionality of Inshimtu, and
the usefulness of being able to enable an in situ shim for simulations that do not
yet have built-in in situ capabilities. While Inshimtu will not save time or cost
of running a simulation, it allows for repeatable scriptable visualizations that
can be interactive and demonstrate the function and power of in situ to a wide
audience.

5 Conclusions and Future Work

The visualization community is investing heavily into creating and expanding
various in situ visualization libraries and frameworks. These efforts are becom-
ing well established and are ready for integration into simulation codes. However,
community adoption of in situ is low, and it is difficult to quickly demonstrate
the benefits of in situ for each and every simulation code. Therefore, we pre-
sented Inshimtu as a stepping stone towards full in situ visualization workflows.
Inshimtu is a low barrier to entry in situ "shim" that works without modifying
existing simulation codes, allowing for users to try before they buy into a full in
situ integration. We also demonstrated Inshimtu usage on desktop machines as
well as a use case on the Shaheen II supercomputer.
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In the future, we would like to extend Inshimtu to work with more file types
and demonstrate the benefits of using an in situ shim approach vs. a traditional
post hoc approach at larger scale. We would also like to update the code base to
use the newest iteration of Catalyst. We are also continuing work on integrating
a data streaming library into a second version of Inshimtu that will allow simu-
lation codes to bypass the filesystem, which is a current limitation. Finally, we
hope to demonstrate the benefits of in situ to other codes run at KAUST and
around the world using Inshimtu, helping to promote broader in situ adoption.
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