Visualization Laboratory Wiki
Docs» highlights:2023:riemannian_geometry_tutorial

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
highlights:2023:riemannian_geometry_tutorial [2023/05/08 10:09] – created Thomas Theusslhighlights:2023:riemannian_geometry_tutorial [2023/05/08 10:29] (current) – Thomas Theussl
Line 8: Line 8:
 <WRAP center round box 100%> {{:favicon.ico?nolink&0x30}} <fs:26px>** KVL Staff on Project**</fs> <WRAP center round box 100%> {{:favicon.ico?nolink&0x30}} <fs:26px>** KVL Staff on Project**</fs>
  
-{{:icon:twbs:link:w-25:h-auto:person.svg?nolink&}} Thomas Theu&szlig;l \\ +{{:icon:twbs:link:w-25:h-auto:person.svg?nolink&}} Thomas Theußl \\ 
-{{:icon:twbs:link:w-25:h-auto:envelope-at.svg?nolink&}}  Thomas.theussl@kaust.edu.sa \\+{{:icon:twbs:link:w-25:h-auto:envelope-at.svg?nolink&}}  thomas.theussl@kaust.edu.sa \\
 {{:icon:twbs:link:w-25:h-auto:building.svg?nolink&}} Building 1, Level 0, Office 0120 \\ {{:icon:twbs:link:w-25:h-auto:building.svg?nolink&}} Building 1, Level 0, Office 0120 \\
 </WRAP> </WRAP>
Line 25: Line 25:
  
 ===== Overview ===== ===== Overview =====
-KVL, in collaboration with Prof. Markus Hadwiger's group and Saudi Aramco, is developing a large-scale geological model visualization system that can handle oil reservoir simulation models with up to one trillion cells.+KVL, in a collaboration led by Prof. Markus Hadwiger, presents a tutorials introducing the most important basics of Riemannian geometry and related concepts with a specific focus on applications in scientific visualization
  
 ===== Work Summary===== ===== Work Summary=====
-Saudi Aramco is continuously improving their oil reservoir simulation capabilities, with the aim of increasing the resolution of their simulations, currently aiming for outputs with one trillion cells. The scale of the generated data sets cannot be handled with standard visualization tools due to the sheer amount of data that needs to be processed in real time. This collaborative project aims to address this challenge by developing a visualization system that scales to arbitrary data complexity. When the project started in January 2019 until the end of its first phase in December 2021, it was led by then Research Scientist, Dr. Ronell Sicat, who is now a Visualization Scientist at KVL. The second phase of the project which spans November 2022 to end of 2025 is currently in progress with plans of adding advanced analysis and flow visualization features. This time, Dr. Sicat provides expert support and development contributions to the project. So far, this project has resulted in two publications in the biggest visualization conference IEEE VIS where Dr. Sicat presented in Oklahoma City, USA on October 2022 (see below for papers and photos).+The two main goals of this tutorial are: 
 +  * Introduce Riemannian geometry to scientific visualization researchers and practitioners 
 +  * Introduce researchers working in/with differential geometry or mathematical physics to important applications in scientific visualization.  
 +We try to particularly highlight the additional insight that can be gained from employing concepts from Riemannian geometry in scientific visualization, however, we also discuss computational advantages. In addition to Riemannian metrics, we also introduce the most important related concepts from modern, coordinate-free differential geometry, in particular general (non-Cartesian) tensor fields and differential forms, smooth mappings between manifolds, Lie derivatives, and Lie groups and Lie algebras. Throughout the tutorial, we use several examples from the scientific visualization literature, dealing with scalar, vector, or tensor fields, respectively, and highlight their implicit or explicit connections to Riemannian geometry.
  
-**R. Sicat**, M. Ibrahim, A. Ageeli, F. Mannuss, P. Rautek and M. Hadwiger, "Real-Time Visualization of Large-Scale Geological Models with Nonlinear Feature-Preserving Levels of Detail," in IEEE Transactions on Visualization and Computer Graphics, doi: 10.1109/TVCG.2021.3120372. +  * {{https://vccvisualization.org/RiemannianGeometryTutorial | Riemannian Geometry in Scientific Visualization Project Page}} 
- +  * {{https://dl.acm.org/doi/abs/10.1145/3550495.3558227 | SIGGRAPH Asia 2022 Course Notes}} 
-A. Ageeli, A. Jaspe Villanueva, **R. Sicat**, F. Mannuss, P. Rautek and M. Hadwiger, "Multivariate Probabilistic Range Queries for Scalable Interactive 3D Visualization," to appear in IEEE Transactions on Visualization and Computer Graphics (Proceedings IEEE VIS 2022). +
- +
-{{ :wiki:highlights:2023:tcv_vis.png?800 |}}+
  
 ===== Impact ===== ===== Impact =====
-This long-term project with KAUST faculty and in-Kingdom entity Saudi Aramco is an example of KVL's wide-ranging collaborative efforts resulting, not only in beneficial technologies but also scientific publications. +This long-term project with KAUST faculty is an example of KVL's wide-ranging collaborative efforts to provide training on state-of-the-art visualization techniques for scientific discovery.
  
  

Site Tools

  • Media Manager

Page Tools

  • Show page
  • Old revisions
  • Backlinks
  • Back to top

User Tools

  • Log In
highlights/2023/riemannian_geometry_tutorial.1683540549.txt.gz · Last modified: 2023/05/08 10:09 by Thomas Theussl
Visualization Laboratory Wiki

Table of Contents

Welcome to the KVL

  • Home
  • Training Events
  • Facilities
  • Highlights

KVL Documentation

  • Frequently Asked Questions
  • Visualization Tools User Guides
  • AR & VR Tools User Guides
  • Data Science Tools User Guides
  • Facility User Guides