Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| highlights:2025:foramslice [2025/12/02 06:25] – second draft Didier Barradas Bautista | highlights:2025:foramslice [2025/12/02 06:38] (current) – Didier Barradas Bautista | ||
|---|---|---|---|
| Line 2: | Line 2: | ||
| <WRAP center> | <WRAP center> | ||
| - | < | + | < |
| </ | </ | ||
| Line 9: | Line 9: | ||
| <WRAP center> | <WRAP center> | ||
| - | {{: | + | {{: |
| </ | </ | ||
| <WRAP center round box 100% large> {{: | <WRAP center round box 100% large> {{: | ||
| - | {{: | + | {{: |
| {{: | {{: | ||
| Line 27: | Line 27: | ||
| <WRAP center round box 100%> {{: | <WRAP center round box 100%> {{: | ||
| + | |||
| {{: | {{: | ||
| - | Physical Sciences and Engineering Division \\ | ||
| {{: | {{: | ||
| {{: | {{: | ||
| - | Physical Sciences and Engineering Division \\ | ||
| {{: | {{: | ||
| + | |||
| </ | </ | ||
| Line 41: | Line 41: | ||
| <WRAP twothirds column> | <WRAP twothirds column> | ||
| - | < | + | ===== Research Breakthrough ===== |
| - | <fs 20> | + | < |
| - | </ | + | Foraminifera are microscopic organisms whose fossilized shells provide insight into the history of Earth' |
| + | * 📊 Tested on 97 specimens representing 27 species, ForamDeepSlice achieved **95.6%** accuracy and **99.6%** top-3 accuracy across 109,617 2D slices. | ||
| + | * 🎯 The method includes an interactive dashboard for real-time classification and 3D slice matching. | ||
| + | * 🔬 This work establishes new benchmarks for AI-assisted micropaleontological identification. | ||
| + | </ | ||
| + | | ||
| - | Foraminifera are microscopic organisms whose fossilized shells reveal Earth' | ||
| - | < | + | < |
| - | **🎯 Key Results:** | + | <fs 18>**🔬 Research Visualization**</fs> |
| - | * **95.6%** accuracy across 12 species | + | The workflow diagram below illustrates our comprehensive deep learning pipeline for automated foraminifera classification. The paper entitled " |
| - | * **99.6%** top-3 accuracy | + | |
| - | * **109, | + | |
| - | * Interactive dashboard | + | |
| </ | </ | ||
| - | |||
| - | </ | ||
| - | </ | ||
| - | |||
| - | ---- | ||
| - | |||
| - | ===== 📊 Research Overview ===== | ||
| - | |||
| <WRAP center> | <WRAP center> | ||
| - | {{: | + | {{: |
| </ | </ | ||
| - | <WRAP group> | + | <fs 18>**🎯 KVL's Contribution**</fs> |
| - | <WRAP half column> | + | KVL's visualization scientists |
| - | <WRAP notice box 100%> | + | |
| - | **Dataset** | + | |
| - | | + | |
| - | | + | |
| - | | + | |
| - | | + | |
| - | </ | + | |
| - | </ | + | |
| - | <WRAP half column> | + | |
| - | <WRAP notice box 100%> | + | |
| - | **Methods** | + | * Evaluation and benchmarking of 7 state-of-the-art CNN architectures |
| - | * 7 state-of-the-art CNN architectures | + | * Development of an interactive dashboard with real-time classification and 3D slice matching |
| - | * Novel PatchEnsemble strategy | + | * Optimization of preprocessing pipeline and data augmentation |
| - | * Transfer learning from ImageNet | + | * Public release of the ForamDeepSlice framework for scientific community use |
| - | * Advanced | + | |
| - | </ | + | |
| - | </ | + | |
| - | </ | + | |
| - | ==== Top Performing Models ==== | ||
| - | ^ Model ^ Accuracy ^ F1-Score ^ | + | </WRAP> /* end column */ |
| - | | **ForamDeepSlice (Ensemble)** | **95.6%** | **95.0%** | | + | </ |
| - | | ConvNeXt-Large | 95.1% | 94.1% | | + | |
| - | | NASNet | 93.7% | 92.5% | | + | |
| - | | ResNet101V2 (Baseline) | 84.3% | 80.8% | | + | |
| - | + | ||
| - | Most species achieved F1-scores **exceeding 90%**, with the best reaching **99.7%**. Our PatchEnsemble approach significantly improved classification of challenging species. | + | |
| - | + | ||
| - | ---- | + | |
| - | + | ||
| - | ===== 💻 Interactive Dashboard ===== | + | |
| - | + | ||
| - | < | + | |
| - | {{: | + | |
| - | </WRAP> | + | |
| - | + | ||
| - | <WRAP group> | + | |
| - | <WRAP half column> | + | |
| - | <color # | + | |
| - | **Classification Features: | + | |
| - | * Drag-and-drop image upload | + | |
| - | * Automatic preprocessing & segmentation | + | |
| - | * Real-time species prediction | + | |
| - | * Confidence scores & rankings | + | |
| - | * Works with micro-CT and optical images | + | |
| - | </ | + | |
| - | </ | + | |
| - | + | ||
| - | <WRAP half column> | + | |
| - | <color # | + | |
| - | **3D Slice Matching: | + | |
| - | * Find slice orientation in 3D models | + | |
| - | * Advanced similarity metrics (SSIM, NCC, Dice) | + | |
| - | * Interactive 3D visualization | + | |
| - | * No coding required | + | |
| - | </color> | + | |
| - | </ | + | |
| - | </WRAP> | + | |
| - | + | ||
| - | <WRAP center important> | + | |
| - | [[https:// | + | |
| - | </ | + | |
| - | + | ||
| - | ---- | + | |
| - | + | ||
| - | ===== 🌟 Impact & Applications ===== | + | |
| - | + | ||
| - | ^ Scientific Contributions ^ Future Applications ^ | + | |
| - | | First comprehensive micro-CT foram classification dataset | Expand to additional species | | + | |
| - | | Accelerates fossil identification workflows (reduces expert time) | Mobile applications for field use | | + | |
| - | | Supports biostratigraphy and climate reconstruction research | Integration with geological context | | + | |
| - | | Fully reproducible Docker environment | Address homeomorphy challenges | | + | |
| - | | Open-source framework for domain scientists | Integration with field equipment | | + | |
| - | + | ||
| - | <WRAP important> | + | |
| - | **Note:** ForamDeepSlice is a decision-support tool for experts, complementing—not replacing—careful taxonomic analysis. | + | |
| - | </WRAP> | + | |
| - | + | ||
| - | ---- | + | |
| - | + | ||
| - | ===== 📚 Resources ===== | + | |
| - | + | ||
| - | <WRAP center tip box 80%> | + | |
| - | [[https:// | + | |
| - | </ | + | |
| - | **Acknowledgments: | ||
| ---- | ---- | ||
| - | {{tag> | + | {{tag> |