Visualization Laboratory Wiki
Docs» highlights:2025:foramslice

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
highlights:2025:foramslice [2025/12/02 06:34] – Didier Barradas Bautistahighlights:2025:foramslice [2025/12/02 06:38] (current) – Didier Barradas Bautista
Line 42: Line 42:
  
 ===== Research Breakthrough ===== ===== Research Breakthrough =====
-<WRAP hi> +<WRAP> 
-Foraminifera are microscopic organisms whose fossilized shells reveal the history of Earth's climate. Our **ForamDeepSlice** framework uses deep learning to automatically classify 12 foraminifera species from micro-CT scans with unprecedented accuracy.+Foraminifera are microscopic organisms whose fossilized shells provide insight into the history of Earth's climate. Our **ForamDeepSlice** framework uses deep learning to automatically classify 12 foraminifera species from micro-CT scans with unprecedented accuracy.
   * 📊 Tested on 97 specimens representing 27 species, ForamDeepSlice achieved **95.6%** accuracy and **99.6%** top-3 accuracy across 109,617 2D slices.   * 📊 Tested on 97 specimens representing 27 species, ForamDeepSlice achieved **95.6%** accuracy and **99.6%** top-3 accuracy across 109,617 2D slices.
   * 🎯 The method includes an interactive dashboard for real-time classification and 3D slice matching.   * 🎯 The method includes an interactive dashboard for real-time classification and 3D slice matching.
Line 53: Line 53:
 <WRAP notice> <WRAP notice>
 <fs 18>**🔬 Research Visualization**</fs> <fs 18>**🔬 Research Visualization**</fs>
-The workflow diagram below illustrates our comprehensive deep learning pipeline for automated foraminifera classification. The paper entitled "ForamDeepSlice: A High-Accuracy Deep Learning Framework for Foraminifera Species Classification from 2D Micro-CT Slices" is available for download and review [[https://arxiv.org/|here]]. +The workflow diagram below illustrates our comprehensive deep learning pipeline for automated foraminifera classification. The paper entitled "ForamDeepSlice: A High-Accuracy Deep Learning Framework for Foraminifera Species Classification from 2D Micro-CT Slices" is available for download and review [[https://arxiv.org/abs/2512.00912|here]]. 
 </WRAP> </WRAP>
 <WRAP center> <WRAP center>
-{{:wiki:highlights:2025:foram_pipeline.png?1000}}+{{:wiki:highlights:2025:foramdeepslice_workflow_v1.jpg?1000}}
 </WRAP> </WRAP>
  
 <fs 18>**🎯 KVL's Contribution**</fs> <fs 18>**🎯 KVL's Contribution**</fs>
-<color #000000>KVL's visualization scientists **Abdelghafour Halimi**, **Didier Barradas-Bautista**, and **Ronell Sicat** contributed significantly to the development of the ForamDeepSlice framework through:+KVL's visualization scientists **Abdelghafour Halimi**, **Didier Barradas-Bautista**, and **Ronell Sicat** contributed significantly to the development of the ForamDeepSlice framework through:
  
   * Design and implementation of PatchEnsemble strategy for improved classification accuracy   * Design and implementation of PatchEnsemble strategy for improved classification accuracy
Line 68: Line 68:
   * Optimization of preprocessing pipeline and data augmentation strategies   * Optimization of preprocessing pipeline and data augmentation strategies
   * Public release of the ForamDeepSlice framework for scientific community use   * Public release of the ForamDeepSlice framework for scientific community use
-</color>+
  
 </WRAP> /* end column */ </WRAP> /* end column */

Site Tools

  • Media Manager

Page Tools

  • Show page
  • Old revisions
  • Backlinks
  • Back to top

User Tools

  • Log In
highlights/2025/foramslice.1764657285.txt.gz · Last modified: 2025/12/02 06:34 by Didier Barradas Bautista
Visualization Laboratory Wiki

Table of Contents

Welcome to the KVL

  • Home
  • Training Events
  • Facilities
  • Highlights

KVL Documentation

  • Frequently Asked Questions
  • Visualization Tools User Guides
  • AR & VR Tools User Guides
  • Data Science Tools User Guides
  • Facility User Guides