Visualization Laboratory Wiki
Docs» highlights:2025:itercr

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
highlights:2025:itercr [2025/10/23 08:27] – created Didier Barradas Bautistahighlights:2025:itercr [2025/10/23 10:48] (current) – Didier Barradas Bautista
Line 1: Line 1:
-🧬 Improving Protein Docking Accuracy with Iter-CONSRANK +====== 🧬 Improving Protein Docking Accuracy with Iter-CONSRANK ====== 
-By Didier Barradas-Bautista, Visualization Scientist at KAUST+ 
 +<WRAP center> 
 +<fs 32> Increasing the Fraction of Correct Solutions in Ensembles of Protein-Protein Docking Models by an Iterative Consensus Algorithm  
 +</fs> 
 +</WRAP> 
 + 
 +<WRAP group> 
 +<WRAP third column> 
 + 
 +<WRAP center> 
 +{{:wiki:highlights:2025:PPI_IterCR_v1.png?600|}} 
 +</WRAP> 
 + 
 +<WRAP center round box 100% large> {{:favicon.ico?nolink&0x30}} <fs:26px>** KVL Staff on Project**</fs> 
 + 
 +{{:icon:twbs:link:w-25:h-auto:person.svg?nolink&}} Didier Barradas Bautista \\ 
 +{{:icon:twbs:link:w-25:h-auto:envelope-at.svg?nolink&}}  didier.barradasbautista@kaust.edu.sa \\ 
 +{{:icon:twbs:link:w-25:h-auto:building.svg?nolink&}} Building 1, Level 0, Office 0125 \\ 
 +</WRAP> 
 + 
 +<WRAP center round box 100%> {{:wiki:kaust-seeds.png?nolink&0x30}} <fs:26px>** KAUST PI on Project**</fs> 
 + 
 +{{:icon:twbs:link:w-25:h-auto:person.svg?nolink&}} Luigi Cavallo  \\ 
 +{{:icon:twbs:link:w-25:h-auto:envelope-at.svg?nolink&}}  luigi.cavallo@kaust.edu.sa \\ 
 + 
 +</WRAP> 
 + 
 +</WRAP> /* end column */ 
 + 
 +<WRAP twothirds column> 
 + 
 +===== Research Breakthrough ===== 
 +<WRAP>
 Protein–protein docking generates thousands of possible interaction models—but only a few are correct. In our latest collaborative work, we introduce Iter-CONSRANK, an iterative scoring algorithm that filters out incorrect models and enriches the ensemble with correct ones. Protein–protein docking generates thousands of possible interaction models—but only a few are correct. In our latest collaborative work, we introduce Iter-CONSRANK, an iterative scoring algorithm that filters out incorrect models and enriches the ensemble with correct ones.
-📊 Tested on two challenging datasets, Iter-CONSRANK increased the fraction of correct models by up to 8× for medium-difficulty targets and outperformed over 150 scoring functions in ranking accuracy. +  * 📊 Tested on two challenging datasets, Iter-CONSRANK increased the fraction of correct models by up to 8× for medium-difficulty targets and outperformed over 150 scoring functions in ranking accuracy. 
-🎯 The method is available for use in pre-processing docking ensembles or as an independent scoring tool. +  * 🎯 The method is available for use in pre-processing docking ensembles or as an independent scoring tool. 
-🔬 This work was led in collaboration with [KAUST PI Name Placeholder] and our partners at the University of Naples “Parthenope”. +  * 🔬 This work was led in collaboration with Luigi Cavallo and our partners at the University of Naples “Parthenope” 
-🎥 [Video Placeholder: short explainer or animation of the workflow] +</WRAP>  
-📎 Read the full paper: [Link Placeholder]+   
 + 
 + 
 +<WRAP notice> 
 +<fs 18>**🔬 Research Visualization**</fs> 
 +The graphical abstract below illustrates the iterative filtering strategy used to enrich correct protein–protein docking models. The paper entitled "Increasing the Fraction of Correct Solutions in Ensembles of Protein-Protein Docking Models by an Iterative Consensus Algorithm" is available for download and review. [[https://onlinelibrary.wiley.com/doi/pdf/10.1002/pro.70314|here]].  
 +<WRAP info> 
 +<WRAP center> 
 +{{:wiki:highlights:2025:Graphical_abstract.gif|}} 
 +</WRAP> 
 + 
 + 
 + 
 +</WRAP> /* end column */ 
 +<fs 18>**🎯 KVL's Contribution**</fs> 
 +KVL's visualization scientist **Didier Barradas-Bautista** contributed significantly to the development and validation of the Iter-CONSRANK algorithm through: 
 + 
 +  * Design and implementation of contact-based clustering to enhance scoring accuracy 
 +  * Generation of the 3K-BM5up benchmark dataset using multiple docking tools 
 +  * Optimization of iteration parameters and performance evaluation across difficulty categories 
 +  * Comparative benchmarking against 157 scoring functions, demonstrating top performance 
 +  * Public release of the Iter-CONSRANK software for community use 
 +  * Active participation in CAPRI scoring rounds, validating the method in blind tests 
 + 
 +</WRAP> /* end group */ 
 + 
 + 
 +---- 
 +{{tag>highlight kvl}} 
 + 

Site Tools

  • Media Manager

Page Tools

  • Show page
  • Old revisions
  • Backlinks
  • Back to top

User Tools

  • Log In
highlights/2025/itercr.1761208032.txt.gz · Last modified: 2025/10/23 08:27 by Didier Barradas Bautista
Visualization Laboratory Wiki

Table of Contents

Welcome to the KVL

  • Home
  • Training Events
  • Facilities
  • Highlights

KVL Documentation

  • Frequently Asked Questions
  • Visualization Tools User Guides
  • AR & VR Tools User Guides
  • Data Science Tools User Guides
  • Facility User Guides