Visualization Laboratory Wiki
Docs» highlights:2025:itercr

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
highlights:2025:itercr [2025/10/23 08:47] – Didier Barradas Bautistahighlights:2025:itercr [2025/10/23 10:48] (current) – Didier Barradas Bautista
Line 2: Line 2:
  
 <WRAP center> <WRAP center>
-<fs 32>🧬 Increasing the Fraction of Correct Solutions in Ensembles of Protein-Protein Docking Models by an Iterative Consensus Algorithm +<fs 32> Increasing the Fraction of Correct Solutions in Ensembles of Protein-Protein Docking Models by an Iterative Consensus Algorithm 
 </fs> </fs>
 </WRAP> </WRAP>
Line 10: Line 10:
  
 <WRAP center> <WRAP center>
-{{:wiki:highlights:2025:PPI_IterCR_v1.png?400|}}+{{:wiki:highlights:2025:PPI_IterCR_v1.png?600|}}
 </WRAP> </WRAP>
  
-<WRAP center round important box 100% large> {{:favicon.ico?nolink&0x30}} <fs:26px>** KVL Staff on Project**</fs>+<WRAP center round box 100% large> {{:favicon.ico?nolink&0x30}} <fs:26px>** KVL Staff on Project**</fs>
  
 {{:icon:twbs:link:w-25:h-auto:person.svg?nolink&}} Didier Barradas Bautista \\ {{:icon:twbs:link:w-25:h-auto:person.svg?nolink&}} Didier Barradas Bautista \\
Line 32: Line 32:
  
 ===== Research Breakthrough ===== ===== Research Breakthrough =====
-<WRAP hi> +<WRAP>
-<fs 20>+
 Protein–protein docking generates thousands of possible interaction models—but only a few are correct. In our latest collaborative work, we introduce Iter-CONSRANK, an iterative scoring algorithm that filters out incorrect models and enriches the ensemble with correct ones. Protein–protein docking generates thousands of possible interaction models—but only a few are correct. In our latest collaborative work, we introduce Iter-CONSRANK, an iterative scoring algorithm that filters out incorrect models and enriches the ensemble with correct ones.
-📊 Tested on two challenging datasets, Iter-CONSRANK increased the fraction of correct models by up to 8× for medium-difficulty targets and outperformed over 150 scoring functions in ranking accuracy. +  * 📊 Tested on two challenging datasets, Iter-CONSRANK increased the fraction of correct models by up to 8× for medium-difficulty targets and outperformed over 150 scoring functions in ranking accuracy. 
-🎯 The method is available for use in pre-processing docking ensembles or as an independent scoring tool. +  * 🎯 The method is available for use in pre-processing docking ensembles or as an independent scoring tool. 
-🔬 This work was led in collaboration with Luigi Cavallo and our partners at the University of Naples “Parthenope”.</fs>+  * 🔬 This work was led in collaboration with Luigi Cavallo and our partners at the University of Naples “Parthenope”
 </WRAP>  </WRAP> 
      
-<WRAP center> +
-{{:wiki:highlights:2025:membrane3d.png?1000}} +
-</WRAP>+
  
 <WRAP notice> <WRAP notice>
 <fs 18>**🔬 Research Visualization**</fs> <fs 18>**🔬 Research Visualization**</fs>
-The stunning graphical abstract above showcases the innovative approach used in this groundbreaking research. The paper entitled "Impact of active layer morphology on salt permeability in RO composite membranes: 3D modelling from TEM geometry and effective membrane thickness" can be accessed [[https://onlinelibrary.wiley.com/doi/pdf/10.1002/pro.70314|here]]. Please note that all figures used in this article are directly from the original published paper. +The graphical abstract below illustrates the iterative filtering strategy used to enrich correct protein–protein docking models. The paper entitled "Increasing the Fraction of Correct Solutions in Ensembles of Protein-Protein Docking Models by an Iterative Consensus Algorithm" is available for download and review. [[https://onlinelibrary.wiley.com/doi/pdf/10.1002/pro.70314|here]]. 
 <WRAP info> <WRAP info>
-<fs 18>**🎯 KVL's Contribution**</fs> +<WRAP center> 
-KVL's visualization expert Dr. Ronell Sicat provided crucial support through: +{{:wiki:highlights:2025:Graphical_abstract.gif|}} 
-  * Advanced pre-processing of TEM scans +</WRAP> 
-  * Development and testing of segmentation methods + 
-  * Expert post-processing of segmentation data +
-  * Creation of simulation-ready 3D geometries KVL also provided free access to Avizo software for data visualization, segmentation, and analysis and a powerful workstation with a pen-and-tablet interface that enabled faster manual segmentation of the TEM data. KVL's contribution is acknowledged in the paper.+
  
 </WRAP> /* end column */ </WRAP> /* end column */
 +<fs 18>**🎯 KVL's Contribution**</fs>
 +KVL's visualization scientist **Didier Barradas-Bautista** contributed significantly to the development and validation of the Iter-CONSRANK algorithm through:
 +
 +  * Design and implementation of contact-based clustering to enhance scoring accuracy
 +  * Generation of the 3K-BM5up benchmark dataset using multiple docking tools
 +  * Optimization of iteration parameters and performance evaluation across difficulty categories
 +  * Comparative benchmarking against 157 scoring functions, demonstrating top performance
 +  * Public release of the Iter-CONSRANK software for community use
 +  * Active participation in CAPRI scoring rounds, validating the method in blind tests
 +
 </WRAP> /* end group */ </WRAP> /* end group */
  
Line 63: Line 68:
 {{tag>highlight kvl}} {{tag>highlight kvl}}
  
-📎 Read the full paper: [Link Placeholder]+

Site Tools

  • Media Manager

Page Tools

  • Show page
  • Old revisions
  • Backlinks
  • Back to top

User Tools

  • Log In
highlights/2025/itercr.1761209227.txt.gz · Last modified: 2025/10/23 08:47 by Didier Barradas Bautista
Visualization Laboratory Wiki

Table of Contents

Welcome to the KVL

  • Home
  • Training Events
  • Facilities
  • Highlights

KVL Documentation

  • Frequently Asked Questions
  • Visualization Tools User Guides
  • AR & VR Tools User Guides
  • Data Science Tools User Guides
  • Facility User Guides