Visualization Laboratory Wiki
Docs» training:ds:2023:data_science_on-boarding_on_ksl_platforms

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
training:ds:2023:data_science_on-boarding_on_ksl_platforms [2023/05/04 11:46] – removed - external edit (Unknown date) 127.0.0.1training:ds:2023:data_science_on-boarding_on_ksl_platforms [2023/05/04 11:46] (current) – ↷ Page moved from training:ds:data_science_on-boarding_on_ksl_platforms to training:ds:2023:data_science_on-boarding_on_ksl_platforms James Kress
Line 1: Line 1:
 +====== Introduction to Containers on KSL Platforms ======
 +
 +<WRAP group>
 +
 +<WRAP twothirds column>
 +
 +===== Overview =====
 +
 +Kaust Supercomputing Lab and Kaust Visualization Lab invite users with Data Science workload to attend an on-boarding session on how to use the our HPC cluster and Supercomputing. The attendees will familiarize with Ibex and Shaheen and their resources and will be proficient to submit different ML/DL jobs. This is a **hands-on** session so please bring your laptops with a Linux terminal installed
 +===== Learning Outcomes =====
 +
 +After attending the training, you will be able to:
 +
 +  * Understand what resources are available in Ibex and Shaheen
 +  * Be able to login and submit jobs to CPU and GPU resources
 +  * Familiarize with storage and filesystems
 +  * Familiarize with package management of ML/DL software
 +  * Start interactive Jupyter Lab sessions, and multi-gpu/multi-node training batch jobs
 +  * Have an understanding about how to estimate resources your job actually requires
 +
 +There will be a Quiz conducted after the training which is mandatory to submit in order to ensure continued use of KSL resources.
 +
 +</WRAP>
 +
 +<WRAP quarter column><WRAP center round box 100%> {{:icon:twbs:link:w-25:h-auto:calendar3.svg?nolink&}}<tab1> ** Date**
 +
 +  * February 8th, 2023
 +  * 9:00 am - 12:00 pm
 +
 +<WRAP center round box 100%> {{:icon:twbs:link:w-25:h-auto:map.svg?nolink&}}<tab1> ** Venue**
 +
 +  * Room 5220, Level 5, Building 5
 +
 +</WRAP></WRAP>
 +
 +</WRAP>
 +
 +<WRAP column> <WRAP center round box download 100%> {{:icon:twbs:link:w-25:h-auto:globe.svg?nolink&}}**Organizers**
 +
 +{{:icon:twbs:link:w-25:h-auto:person.svg?nolink&}}Didier Barradas Bautista \\ {{:icon:twbs:link:w-25:h-auto:headset-vr.svg?nolink&}}Visualization Core Laboratory \\ {{:icon:twbs:link:w-25:h-auto:envelope-at.svg?nolink&}}didier.barradasbautista@kaust.edu.sa
 +
 +{{:icon:twbs:link:w-25:h-auto:person.svg?nolink&}}Mohsin A. Shaikh \\ {{:icon:twbs:link:w-25:h-auto:headset-vr.svg?nolink&}}Supercomputing Core Laboratory \\ {{:icon:twbs:link:w-25:h-auto:envelope-at.svg?nolink&}}mohsin.shaikh@kaust.edu.sa
 +
 +</WRAP>
 +
 +<wrap indent></wrap> \\ <wrap indent></wrap>
 +
 +</WRAP>
 +
 +<WRAP quarter column><WRAP center round box download 100%> ** Workshop Materials**
 +
 +  * Slides: [[https://www.hpc.kaust.edu.sa/sites/default/files/files/public/DataScienceTrainings/Onboarding/2023/DS_onboarding_corelabs.pdf|Slides]]
 +  * GitHub: [[http://https://github.com/kaust-rccl/Data-science-onboarding|GitHub]]
 +  * Recording: [[https://youtu.be/CkHExEonjSo|Recording]]
 +  * Documentation: [[https://kaust-supercomputing-lab.atlassian.net/l/cp/VrJyDPjK|Docs]]
 +
 +</WRAP>
 +
 +<WRAP center round box todo 100%> **Pre-requisites****?**
 +
 +  * Have KAUST IT credentials (i.e. the one you use to access your KAUST email)
 +  * Bring your laptop and have your terminal ready
 +  * Essential knowledge of Linux shell is necessary.
 +  * Have some experience with working with Conda package manager
 +
 +</WRAP>
 +
 +</WRAP>
 +
 +</WRAP>
 +
 +{{tag>workshop}}
 +
  

Site Tools

  • Media Manager

Page Tools

  • Show page
  • Old revisions
  • Backlinks
  • Back to top

User Tools

  • Log In
Visualization Laboratory Wiki

Table of Contents

Welcome to the KVL

  • Home
  • Training Events
  • Facilities
  • Highlights

KVL Documentation

  • Frequently Asked Questions
  • Visualization Tools User Guides
  • AR & VR Tools User Guides
  • Data Science Tools User Guides
  • Facility User Guides