Visualization Laboratory Wiki
Docs» training:ds:2023:introtodeeplearning

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
training:ds:2023:introtodeeplearning [2023/08/17 12:10] – Abdelghafour Halimitraining:ds:2023:introtodeeplearning [2023/10/08 13:33] (current) – Abdelghafour Halimi
Line 1: Line 1:
-====== Artificial Intelligence Workshop Series ~ Introduction to Deep Learning ======+====== Hands-on AI Tools and Techniques Workshop Series ~ Introduction to Deep Learning ======
  
 <WRAP group> <WRAP quarter column> <WRAP center round box 110%> {{:icon:twbs:link:w-25:h-auto:calendar3.svg?nolink&}} <tab1> <fs:26px>** Date**</fs> <WRAP group> <WRAP quarter column> <WRAP center round box 110%> {{:icon:twbs:link:w-25:h-auto:calendar3.svg?nolink&}} <tab1> <fs:26px>** Date**</fs>
  
-  * Sunday October 8, 2023+  * Tuesday October 10, 2023
   * 9am - 12pm   * 9am - 12pm
  
Line 11: Line 11:
 <WRAP quarter column> <WRAP center round box 110%> {{:icon:twbs:link:w-25:h-auto:map.svg?nolink&}} <tab1> <fs:26px>** Venue**</fs> <WRAP quarter column> <WRAP center round box 110%> {{:icon:twbs:link:w-25:h-auto:map.svg?nolink&}} <tab1> <fs:26px>** Venue**</fs>
  
-  * Building 3, Level 5, Room 5220+  * Level 0 Auditorium, BW B4 and B5
  
 <wrap indent></wrap> \\ <wrap indent></wrap> \\
Line 38: Line 38:
  <fs:26px>** Workshop Materials**</fs>  <fs:26px>** Workshop Materials**</fs>
  
-  * Slides: +  * Github link: [[https://github.com/A-Halimi/Introduction-to-AI-workshop-series|GitHub Repository]] 
-  * Datasets:+
  
 </WRAP> </WRAP>
  
 <WRAP center round box todo 100%> <WRAP center round box todo 100%>
- <fs:26px>** How to Prepare?**</fs>+ <fs:26px>** Pre-requisites**</fs>
  
-  * Review and download the workshop materials +  * Have KAUST IT credentials (i.e. the one you use to access your KAUST email) 
-  * Bring a laptop with VisIt installed +  * A computer (Linux/Windows/Mac) with internet connection & terminal 
-      * VisIt version 3.3.0 or newer is required for the workshop. You can download it from [[https://visit-dav.github.io/visit-website/releases-as-tables/#latest|https://visit-dav.github.io/visit-website/releases-as-tables/#latest]]. +  * Essential knowledge of Python is necessary (Pandas, Numpy libraries…) 
-  * Alternatively, you can use the IT provided [[http://myws.kaust.edu.sa/|remote workstations]] in case you do not have VisIt installed (you have to request the service the first time you use it [[https://kaustforms.formstack.com/forms/remote_workstation_account|here]])+  * Have some experience with working with Conda package manager
  
 </WRAP> </WRAP>
Line 59: Line 58:
 ===== Overview ===== ===== Overview =====
  
-Visualization experts from the laboratory will introduce [[https://visit-dav.github.io/visit-website/|VisIt]]- a highly-scalable, open-source, multi-platform data analysis and visualization application. VisIt users can quickly build visualizations to analyze their data using qualitative and quantitative techniques. The data exploration can be done interactively in 3D. Attendees will participate in a hands-on session working with VisIt to create 3D visualizations of scientific datasets.+This workshop is designed to introduce participants to the fundamental concepts and basic architectures of deep learning—a sophisticated subset of machine learning responsible for the most cutting-edge advancements in artificial intelligence (AI). 
  
-VisIt is an essential tool for scientific visualization, especially for large datasets. It is professional-quality, user-friendly software that is packed with advanced functionality. It was developed to analyze extremely large datasets (using distributed memory and parallel computing resources); but, its special super-power is that it grows with the user's data, running great on the laptop, the workstation, the cluster (Ibex), and the supercomputer (Shaheen). Visualization and analytic pipelines created in VisIt at the start of your project will continue to work efficiently even as the amount of data produced continues to grow.+Without delving into overwhelming technical complexities, attendees will gain a foundational understanding of deep learning models, particularly neural networks. Utilizing the top-tier resources of the KAUST Visualization Core Lab, attendees will experience a mix of in-depth lectures and hands-on sessions, ensuring a foundational grasp of the subject. 
  
-Join us to learn how to prepare data, automate visualizations, and scale your analysis from workstation to cluster to supercomputer.+Whether you're curious about the underlying mechanisms of image classification or computer vision, this workshop is your starting point into the transformative world of deep learning. 
 + 
 +\\
  
 ===== Who Should Attend? ===== ===== Who Should Attend? =====
  
-  * Anyone with zero experience (or beginner/junior) who wants to learn Machine Learning, Data Science +  * Anyone with zero experience (or beginner/junior) who wants to learn Deep Learning, Data Science 
-  * You are a programmer that wants to extend their skills into Data Science and Machine Learning to make yourself more valuable+ 
 +  * You are a programmer that wants to extend their skills into Data Science and Deep Learning to make yourself more valuable 
   * Anyone who wants to learn these topics from industry experts that don’t only teach, but have actually worked in the field   * Anyone who wants to learn these topics from industry experts that don’t only teach, but have actually worked in the field
-  * You want to add value to your own business or company you work for, by using powerful Machine Learning tools.+ 
 +  * You want to add value to your own business or company you work for, by using powerful Deep Learning tools. 
 + 
 +\\
  
 ===== Agenda ===== ===== Agenda =====
  
 ^Time  ^Topic  ^Speaker  | ^Time  ^Topic  ^Speaker  |
-^1:00pm - 1:10pm  |Welcome  |James Kress  | +^9:00am - 9:10am  |Welcome  |Abdelghafour Halimi  | 
-^1:10pm - 1:30pm  |Introduction to Scientific Visualization and the VisIt GUI  |James Kress  | +^9:10am - 10:15am  |Introduction to Deep Learning  |Abdelghafour Halimi  | 
-^1:30pm - 1:45pm  |Coffee Break – Download VisIt & data files  |   | +^10:15am - 10:30am  |Coffee Break |   | 
-^1:45pm - 2:30pm  |Hands-On Session 1: basic plots / volume rendering  |James Kress  | +^10:30am - 12pm  |Hands-On Session: Jupyter Notebooks Examples / Q&A |Abdelghafour Halimi  |
-^2:30pm - 2:45pm  |Coffee Break  |   | +
-^2:45pm - 3:30pm  |Hands-On Session 2: screenshots / movies animations / & more  |James Kress  | +
-^3:30pm  |Q&A  |James Kress  |+
  
 </WRAP> </WRAP> </WRAP> </WRAP>

Site Tools

  • Media Manager

Page Tools

  • Show page
  • Old revisions
  • Backlinks
  • Back to top

User Tools

  • Log In
training/ds/2023/introtodeeplearning.1692274236.txt.gz · Last modified: 2023/08/17 12:10 by Abdelghafour Halimi
Visualization Laboratory Wiki

Table of Contents

Welcome to the KVL

  • Home
  • Training Events
  • Facilities
  • Highlights

KVL Documentation

  • Frequently Asked Questions
  • Visualization Tools User Guides
  • AR & VR Tools User Guides
  • Data Science Tools User Guides
  • Facility User Guides