Differences
This shows you the differences between two versions of the page.
| Next revision | Previous revision | ||
| training:ds:2025:accelerated_ds [2025/11/11 12:02] – created Didier Barradas Bautista | training:ds:2025:accelerated_ds [2025/12/04 10:54] (current) – Didier Barradas Bautista | ||
|---|---|---|---|
| Line 1: | Line 1: | ||
| - | Place holder | + | ====== Fundamentals of Accelerated Data Science (NVIDIA DLI Workshop) ====== |
| + | |||
| + | <WRAP group> <WRAP quarter column> <WRAP center round box 110%> {{: | ||
| + | |||
| + | * Sunday, December 7, 2025 | ||
| + | * 9:00 am – 1:00 pm | ||
| + | |||
| + | <wrap indent></ | ||
| + | </ | ||
| + | |||
| + | <WRAP quarter column> <WRAP center round box 110%> {{: | ||
| + | |||
| + | * Building 1, Level 2, Multi-purpose Room (MPR) (Desert Side) | ||
| + | |||
| + | <wrap indent></ | ||
| + | <wrap indent></ | ||
| + | </ | ||
| + | |||
| + | <WRAP quarter column> | ||
| + | <WRAP center round box 110%> {{: | ||
| + | |||
| + | {{: | ||
| + | {{: | ||
| + | {{: | ||
| + | |||
| + | </ | ||
| + | |||
| + | <WRAP quarter column> <WRAP center round box 100%> | ||
| + | |||
| + | <wrap em button> [[https:// | ||
| + | <wrap indent></ | ||
| + | <wrap indent></ | ||
| + | <wrap indent></ | ||
| + | </ | ||
| + | |||
| + | <WRAP group> <WRAP third column> | ||
| + | {{training: | ||
| + | |||
| + | <WRAP center round box download 100%> | ||
| + | < | ||
| + | * Learn more: [[https:// | ||
| + | * NVIDIA DLI: [[https:// | ||
| + | * NVIDIA event site: [[https:// | ||
| + | |||
| + | </ | ||
| + | |||
| + | <WRAP center round box todo 100%> | ||
| + | < | ||
| + | |||
| + | * Bring a laptop with the latest version of Chrome or Firefox | ||
| + | * Review Python basics, especially pandas and NumPy | ||
| + | * Familiarize yourself with [[https:// | ||
| + | </ | ||
| + | |||
| + | </ | ||
| + | |||
| + | <WRAP twothirds column> | ||
| + | |||
| + | ===== Overview ===== | ||
| + | |||
| + | The NVIDIA Deep Learning Institute (DLI), in collaboration with the KAUST Visualization Core Lab and the KAUST Generative AI Center of Excellence, invites you to a hands-on workshop on **GPU-accelerated data science**. | ||
| + | |||
| + | This session will teach you how to use NVIDIA tools to accelerate data workflows, improve scalability, | ||
| + | |||
| + | This training is **exclusively for KAUST academic students, staff, and researchers**. | ||
| + | |||
| + | ===== Who Should Attend? ===== | ||
| + | |||
| + | This workshop is ideal for: | ||
| + | * Graduate students and postdocs | ||
| + | * Research staff and faculty | ||
| + | * Anyone working with large-scale data science problems | ||
| + | |||
| + | ===== Learning Objectives ===== | ||
| + | |||
| + | * Use **cuDF** to accelerate pandas, Polars, and Dask | ||
| + | * Apply **XGBoost** and other ML algorithms | ||
| + | * Analyze networks using **NetworkX** and **cuGraph** | ||
| + | |||
| + | ===== Prerequisites ===== | ||
| + | |||
| + | * Experience with Python (especially pandas and NumPy) | ||
| + | * A laptop with Chrome or Firefox installed | ||
| + | |||
| + | ===== Certification ===== | ||
| + | |||
| + | * Code-based assessment | ||
| + | * Certificate available upon successful completion | ||
| + | |||
| + | ===== Agenda ===== | ||
| + | |||
| + | ^ Time ^ Topic ^ | ||
| + | | 09:00 | Welcome & Introduction | | ||
| + | | 09:15 | Accelerated DataFrames with cuDF | | ||
| + | | 10:00 | Machine Learning with RAPIDS & XGBoost | | ||
| + | | 11:00 | Graph Analytics with cuGraph | | ||
| + | | 12:00 | Hands-on Exercises & Q&A | | ||
| + | |||
| + | </ | ||
| + | |||
| + | ---- | ||
| + | |||
| + | {{tag> | ||