Visualization Laboratory Wiki
Docs» training:ds:2025:introtoml

This is an old revision of the document!


# 🤖 Hands-on AI Tools and Techniques Workshop Series ## 🚀 Introduction to Machine Learning

—## 👥 Who Should Attend?

🎓

<h4 style=“color: white; margin-bottom: 15px; text-align: center;”>Beginners & Students</h4> <p style=“text-align: center; line-height: 1.6; margin: 0;”>Anyone with zero experience who wants to learn Machine Learning and Data Science</p>

💻

<h4 style=“color: white; margin-bottom: 15px; text-align: center;”>Developers</h4> <p style=“text-align: center; line-height: 1.6; margin: 0;”>Programmers wanting to extend their skills into Data Science and Machine Learning</p>

🚀

<h4 style=“color: white; margin-bottom: 15px; text-align: center;”>Professionals</h4> <p style=“text-align: center; line-height: 1.6; margin: 0;”>Anyone wanting to add value to their business using powerful Machine Learning tools</p>

🏆

<h4 style=“color: white; margin-bottom: 15px; text-align: center;”>Industry Learners</h4> <p style=“text-align: center; line-height: 1.6; margin: 0;”>Those who want to learn from industry experts with real field experience</p>

le=“display: grid; grid-template-columns: repeat(auto-fit, minmax(250px, 1fr)); gap: 20px; margin: 30px 0;”>

📅

<h3 style=“color: white; margin: 10px 0; font-size: 1.4rem;”>Date & Time</h3>

<strong>Monday, October 13, 2025</strong><br> <strong>2:00 PM - 5:00 PM</strong>

📍

<h3 style=“color: white; margin: 10px 0; font-size: 1.4rem;”>Venue</h3>

<strong>Level 0 Auditorium</strong><br> <strong>BW B2 and B3</strong>

👨‍🔬

<h3 style=“color: white; margin: 10px 0; font-size: 1.4rem;”>Organizer</h3>

<strong>Abdelghafour HALIMI</strong><br> Visualization Core Laboratory<br> <em>abdelghafour.halimi@kaust.edu.sa</em>

✨

<h3 style=“color: white; margin: 10px 0; font-size: 1.4rem;”>Registration</h3>

<a href=“https://kaustforms.formstack.com/forms/introduction_to_machine_learning_fall_2024” style=“background: rgba(255,255,255,0.9); color: #333; padding: 12px 25px; border-radius: 25px; text-decoration: none; font-weight: bold; display: inline-block; transition: all 0.3s ease; box-shadow: 0 4px 15px rgba(0,0,0,0.2);”>

 🎯 Register Now!

</a>

</div>

—

<img src=“:wiki:training:2023:AI_workshop_ML.png” alt=“AI Workshop ML” style=“width: 100%; border-radius: 15px; box-shadow: 0 8px 25px rgba(0,0,0,0.15);”>

📚

<h3 style=“margin: 0; color: #2c3e50; font-size: 1.3rem;”>Workshop Materials</h3>

<a href=“https://github.com/A-Halimi/Introduction-to-AI-workshop-series” style=“color: #2c3e50; text-decoration: none; font-weight: 600; display: flex; align-items: center;”>

 <span style="margin-right: 8px;">🔗</span>
 GitHub Repository

</a>

⚡

<h3 style=“margin: 0; color: #2c3e50; font-size: 1.3rem;”>Prerequisites</h3>

<ul style=“margin: 0; padding-left: 20px; color: #2c3e50; line-height: 1.6;”> <li><strong>KAUST IT credentials</strong> (for email access)</li> <li><strong>Computer</strong> (Linux/Windows/Mac) with internet & terminal</li> <li><strong>Python knowledge</strong> (Pandas, Numpy libraries)</li> <li><strong>Conda experience</strong> (package manager)</li> </ul>

## 🎯 Overview

<p style=“font-size: 1.1rem; line-height: 1.8; color: #2c3e50; margin: 0;”> This workshop serves as an <strong>introduction to the exciting world of machine learning</strong>, a subfield of artificial intelligence (AI). Participants will gain a foundational understanding of the core concepts, techniques, and applications of machine learning. </p>

<p style=“font-size: 1.1rem; line-height: 1.8; color: #2c3e50; margin: 20px 0 0 0;”> Leveraging the <strong>state-of-the-art facilities of the KAUST Visualization Core Lab</strong>, attendees will have an immersive experience, combining theoretical lessons with practical exercises. This workshop is ideal for those looking to embark on a journey into AI and machine learning, as well as for professionals seeking to enhance their knowledge in this rapidly-evolving domain. </p>

Who Should Attend?

  • Anyone with zero experience (or beginner/junior) who wants to learn Machine Learning, Data Science
  • You are a programmer that wants to extend their skills into Data Science and Machine Learning to make yourself more valuable
  • Anyone who wants to learn these topics from industry experts that don’t only teach, but have actually worked in the field
  • You want to add value to your own business or company you work for, by using powerful Machine Learning tools.


## 📅 Agenda

2:00 PM - 2:10 PM

<h4 style=“margin: 0; color: #2c3e50; font-size: 1.2rem;”>🎉 Welcome</h4>

Abdelghafour Halimi

2:10 PM - 3:15 PM

<h4 style=“margin: 0; color: #2c3e50; font-size: 1.2rem;”>🤖 Introduction to Machine Learning</h4>

Abdelghafour Halimi

3:15 PM - 3:30 PM

<h4 style=“margin: 0; color: #2c3e50; font-size: 1.2rem;”>☕ Coffee Break</h4>

Networking Time

3:30 PM - 5:00 PM

<h4 style=“margin: 0; color: #2c3e50; font-size: 1.2rem;”>💻 Hands-On Session: Jupyter Notebooks Examples / Q&A</h4>

Abdelghafour Halimi

—

<h3 style=“color: white; margin-bottom: 15px;”>🚀 Ready to Start Your AI Journey?</h3> <p style=“font-size: 1.1rem; margin-bottom: 20px; line-height: 1.6;”>Join us for this comprehensive introduction to Machine Learning!</p> <a href=“https://kaustforms.formstack.com/forms/introduction_to_machine_learning_fall_2024” style=“background: rgba(255,255,255,0.9); color: #333; padding: 15px 30px; border-radius: 25px; text-decoration: none; font-weight: bold; display: inline-block; transition: all 0.3s ease; box-shadow: 0 4px 15px rgba(0,0,0,0.2);”>

 ✨ Register Now - Don't Miss Out!

</a>

—

🏷️ #workshop #machinelearning #AI #KAUST

Previous Next

Site Tools

  • Media Manager

Page Tools

  • Old revisions
  • Backlinks
  • Back to top

User Tools

  • Log In
training/ds/2025/introtoml.1756551379.txt.gz · Last modified: 2025/08/30 10:56 by Abdelghafour Halimi
Visualization Laboratory Wiki

Table of Contents

Welcome to the KVL

  • Home
  • Training Events
  • Facilities
  • Highlights

KVL Documentation

  • Frequently Asked Questions
  • Visualization Tools User Guides
  • AR & VR Tools User Guides
  • Data Science Tools User Guides
  • Facility User Guides